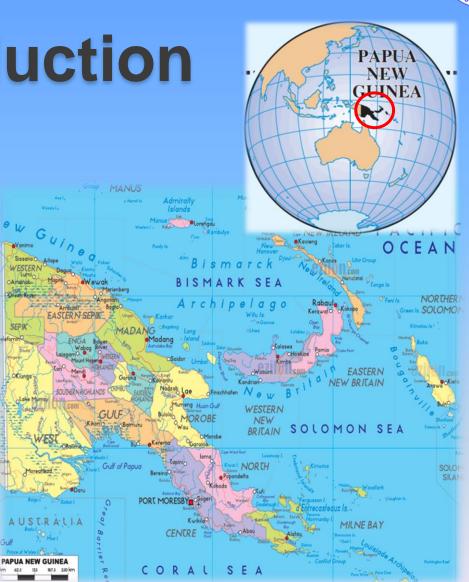


Results of Geochemical Mapping In Kainantu, Eastern Highlands Province, Papua New Guinea

 \bullet \bullet \bullet

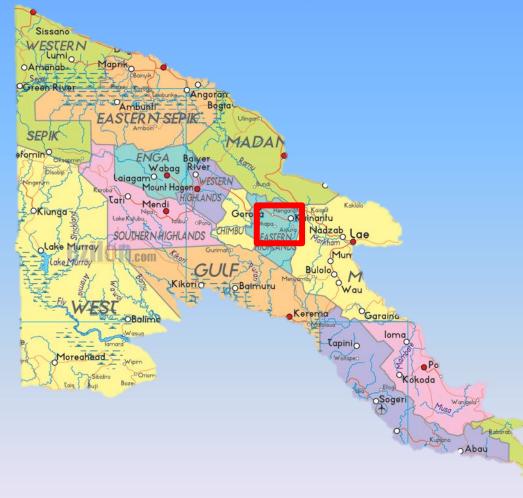
Philip Samar Mineral Resources Authority Papua New Guinea


- Introduction
- Description of work area
- Field work
- Sample analysis and data processing
 Results

Introduction

- PNG is an Island Nation in the Pacific, north of Australia and east of Indonesia.
- Area (Land) : 462, 000 km²
- Population: ~8million
- Language: English, Pidgin, Motu
- GDP(per capita): \$2400 US \succ
- Economy: Export Economy \succ (mineral exports = ~ 65%)

Project Background

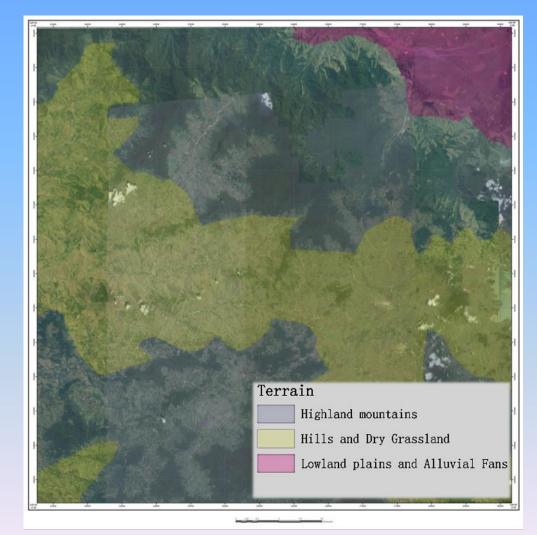

- MOU of Collaborative work in Geosciences between Ministry of Lands & Resources of PRC and Department of Mining, PNG, signed in 2012, Tianjin, China
- Collaborative work agreement
 between CGS and MRA signed in
 2013, Tianjin, China
- Collaborative work started in PNG, 2014

MOU signing ceremony in Tianjin China Mining, 2013

Description of work area

Mineral Resources Authority

- The project area is located east of Eastern Highlands Province(EHP) (indicated by red box)
- Covers six districts in EHP, and part of Morobe


Province

Topography

The project area shows

- 3 main Landscapes:
- Highland mountains
- Hills and Dry
 - Grassland
- Lowland plains and Alluvial Fans

Topography

Highlands Mountains – mostly dense uninhabited rainforest

lineral

Mineral Resources Authority

China Geological Survey

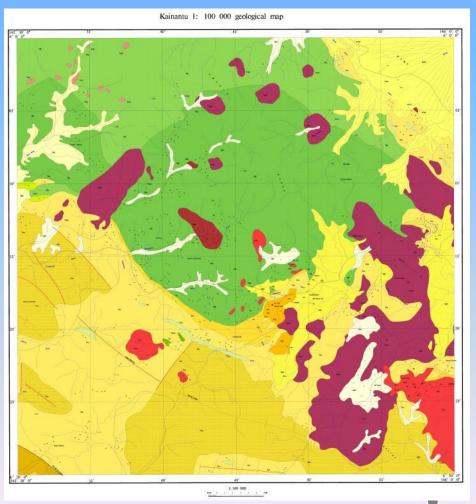
Topography

Hills and Dry grassland- mostly short 'Kunai' grass

Mineral Resources Authority

China Geological Survey

Topography


Lowland Plains & Alluvial Fans- Ramu valley

	Holocene	Alluvium swamp and beach deposits			
		Lacustrine deposits			
Quaternary	Pleistocene To Holocene	Piedmont slope deposits			
	Pleistocene	Kainantu Beds			
	Upper Miocene	Elendora Porphyry			
		Bismarck Intrusive Complex			
	Middle Miocene	Yaveufa Formation			
		Aifunka Yolcanics			
		Akuna Intrusive Complex			
Tertiary	Lower Miocene To Middle Miocene	Movi Beds			
, er der j	Middle Oligocene To Upper Oligocene	Omaura Greywacke			
	Oligocene	Nasananka Conglomerate			
	Middle Eocene To Lower Oligocene	Chimbu Limestone			
	Upper-Cretaceous	Mount Victor Granodiorite			
Mesozoic	Jurassic To Cretaceous	Goroka Formation			
	Lower Jurassic	Karmantina Gneissic Granite			
	Triassic	Bena Bena Formation			

Geology

Mineralization

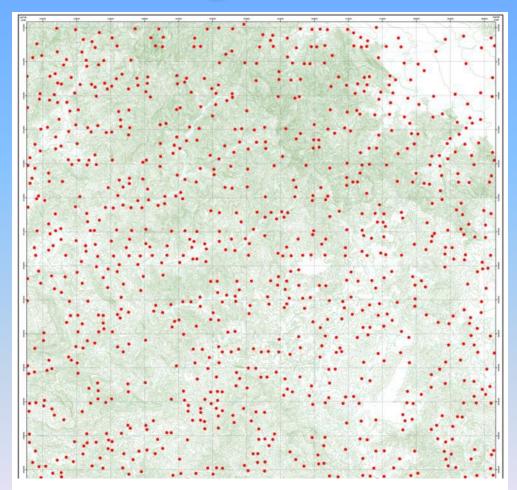
- Gold: mainly occurred in the eastern part of the mapsheet
- Silver: minor silver associated with the gold mineralization in Kainantu mine
- Copper: occurred in Bilimoia, Yonki Creek Prospect and Aimontina
- Lead-Zinc: minor lead-zinc mineralization at Efontera Prospect

Pre-field Preparation

Indoor training

Field training

Training in 2014


Nanjing Center, CGS conduct the indoor and field training for regional geochemical training in Port Moresby, PNG.

Sample design

865 samples were
 designed for regional
 geochemical mapping
 at scale of 1 : 100 000

Mineral Resources Authority

Geochemical sample design distribution map

Community Awareness

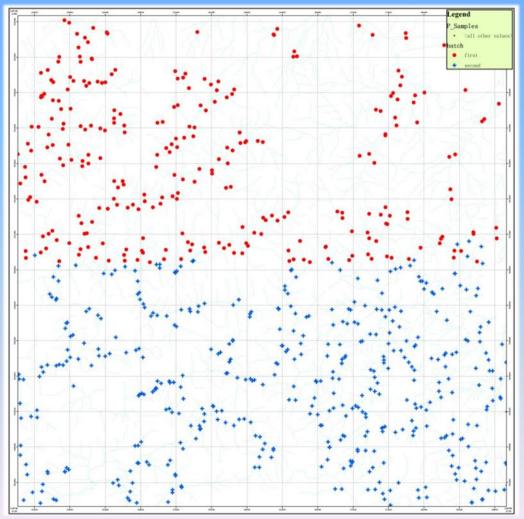
Permission to work from local community, is very important.

Mineral Resources Authority

Mineral Resources Authority

China Geological Survey

Sampling

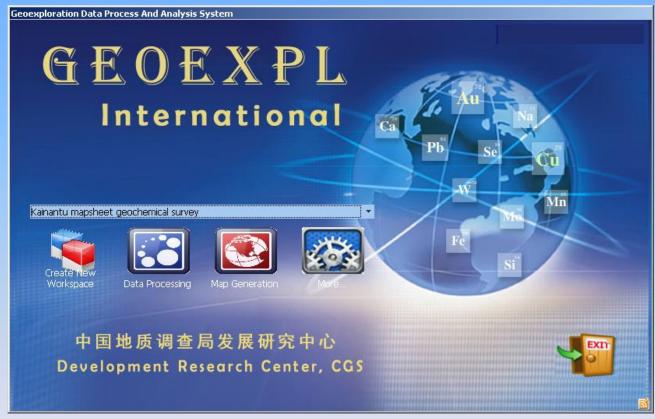


Field Work Accomplished

Regional geochemical survey in Kainantu mapsheet conducted in two stages:

- northern part of mapsheet:
 302 samples collected
- 2. southern part of mapsheet:474 samples collected

Laboratory Analysis


	Analysis method	Elements / compounds				
39 elements	XRF	SiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃ , K ₂ O, Na ₂ O, CaO, MgO, Ba,				
analyzed in Nanjing		Cr、Mn、P、Ti、 La、Y、 Zr				
Geological Testing	ICP-MS	Cu、Pb、Zn、Co、Ni、Cd、 V、Li、Be、U、Th、Nb、				
Center, Ministry of		W、Mo、Sr、Sc				
Land & Resources	GFAAS	Au				
of China.	AFS	As、Sb、Bi、Hg				
	ES	Ag、B、Sn				
	ISE	F				

Data Processing

The analysis data are processed and geochemical map generated by GeoExpl (International).

Mineral Resources Authority

GeoExpl, developed by Development Research center, CGS

Results

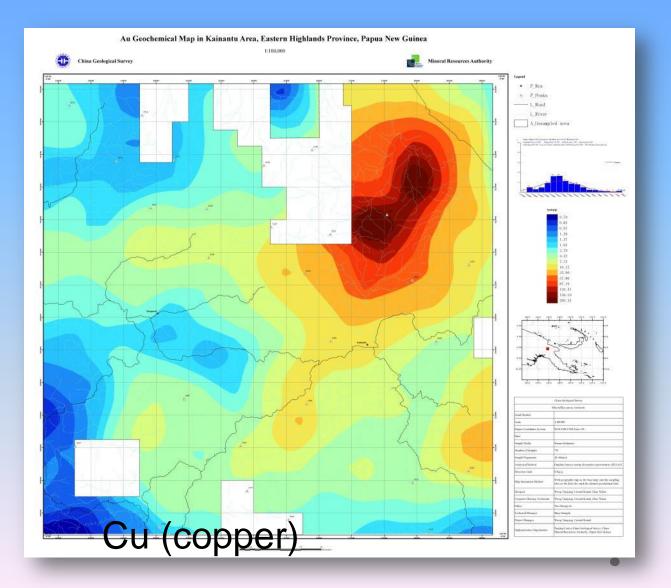
id	x	у	SiO ₂ (%)	Al ₂ O ₃ (%)	TFe2O3 (%)	MgO (%)	CaO (%)	Na ₂ O (%)	K ₂ O (%)	MnO (%)	P₂O₅ (%)	TiO ₂ (%)
002B1	339393.75	9336157.1	60.86	15.97	7.3	1.57	0.705	1.018	2.339	0.079663	0.122796	0.67891
003B1	339936.43	9335878.3	61.87	15.93	6.73	1.482	0.682	0.997	2.343	0.076383	0.114662	0.6841
004C1	340817.71	9334621.1	60.56	16.68	6.39	1.46	0.489	1.242	2.407	0.091147	0.125683	0.688
004D1	341710.22	9334186.4	69.26	12.34	4.2	1.177	0.362	0.767	2.796	0.058327	0.089617	0.4461
005A1	342641.1	9335291.8	54.59	19.27	7.92	1.78	0.142	0.876	2.766	0.138696	0.137782	0.80781
007C1	344161.35	9334792.1	74.6	10.76	2.8	0.897	0.172	0.733	2.954	0.037539	0.061226	0.36532
011D1	354401.44	9334825.6	57.75	16.26	7.09	2.186	1.179	1.922	2.288	0.08215	0.210121	0.68988
017B11	363428.48	9335177.7	62.69	16.37	7.41	1.224	0.307	0.913	2.305	0.041611	0.082078	0.67310
017C11	363010.61	9334560.1	54.99	16.6	8.51	3.014	1.714	1.729	1.825	0.069958	0.117961	0.86491
022A1	372660.84	9335551.9	50.19	14.75	12.8	3.027	2.283	1.53	1.617	0.126931	0.177973	1.15810
024C1	374198.58	9334501.6	59.62	13.37	7.09	1.625	2.534	1.885	1.486	0.083357	0.137942	0.66890
025D1	377935.7	9334700.6	51.89	12.21	7.48	3.244	5.872	2.187	1.086	0.125334	0.169678	0.84702
028D1	382909.72	9334501.9	51.77	12.54	7.8	3.36	5.757	2.83	1.143		0.173069	0.8506
029B1	384703.37	9334557	51.9	11.7	7.86	3.548	6.139	3.677	1.041	0.173773	0.170091	0.88684
031C1	389822.37	9335041.9	52.43	11.78	7.96	3.568	6.088	3.559	0.98	0.167957	0.150591	0.88951
034C1	338809.83	9332011.6	59.07	13.88	5.81	2.118	2.213	2.486	2.026	0.093732	0.107971	0.63634
036A11	340980.24	9333084	57.77	14.47	6.49	2.625	2.65	2.357	2.261	0.12359	0.131641	0.82131
036D11	341137.91	9332046.6	60.76	15.8	6.05	1.599	0.672	1.375	2.597	0.108619	0.129716	0.71752
037A1	342044.96	9333680.7	60.8	15.4	5.08	1.581	0.695	1.627	2.878	0.101206	0.095276	0.70109
037D1	342463.34	9331836.8	60.56	15.59	5.27	1.775	0.924	1.435	2.963	0.086222	0.104167	0.67450
038A1	344256.28	9334650.2	76.34	9.76	2.66	0.732	0.144	0.689	2.874	0.036661	0.052656	0.36564
043B1	354399.44	9334826.6	58.62	15.8	7.45	2.016	0.848	2.193	2.256	0.123237	0.21113	0.68921
048B1	363062.59	9334488.1	56.65	15.02	7.97	2.112	2.157	2.315	1.806	0.142	0.167937	1.18141
049C1	365347.97	9332636.2	58.29	17.2	9.47	1.023	0.3	0.95	2.151	0.089489	0.098966	0.87745
056A1	377985.78	9334158.9	51.52	11.92	7.82	3.409	6.1	3.506	1.007	0.169713	0.163927	0.8550
059A1	382278.1	9333339.5	52.98	11.73	7.92	3.352	5.851	3.679	1.009	0.164373	0.151416	0.88298
062B1	389751.44	9331677.5	48.38	12.01	8.98	5.052	7.94	1.615	1.06	0.122932	0.172428	0.93361
064C1	336745 13	9330222.5	53.6	14 14	9 99	3 102	3 375	1 874	2 016	0 148206	0 173642	1 2841

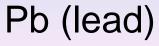
Part of the analysis result

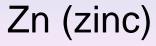
Results

Information on Mineral potential:

Au (gold)、Cu (copper)、Pb (lead)、Zn (zinc)、Ag (silver)、Co、Ni、V、Li、U、 Nb、W、Mo、Sn、Sb、Bi







Ag (silver)

Results

Information on Geology: SiO_2 (silicon dioxide) $\sum Fe_2O_3$ (iron oxide) K₂O(potassium oxide)、 Na₂O (sodium oxide), MgO (magnesium oxide), CaO, AI_2O_3 , MnO, P_2O_5 , TiO₂, La, Y

SiO₂ (Silicon dioxide)

Fe_2O_3 (iron oxide)

K₂O(potassium oxide)

Na₂O (sodium oxide)

MgO (magnesium oxide)

Results

Information on Environment : As (arsenic), Hg (mercury), Cd

(cadmium)、F、Cr、Pb、U、Th

As (arsenic)

Hg (mercury)

Cd (cadmium)

Thank you!

http://www.mra.gov.pg/